SOLUTION OF THE NONLINEAR INVERSE PROBLEM
FOR A GENERALIZED HEAT-CONDUCTION EQUATION
IN A REGION WITH MOVING BOUNDARIES
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In an analysis of the numerical solution of the nonlinear inverse heat-conduction problem in
a region with moving boundaries, a regularization method is used to construct an algorithm

for smoothing the experimental data in a compilation of the input data for the inverse prob-
lem.

The inverse heat-conduction problems constitute an extremely important and rapidly developing
branch of the theory of the unsteady thermal experiment. Of particular importance in studies of high-
temperature processes are the nonlinear formulations of the inverse problems, in which the thermal
properties of the material depend on the temperature.

Below we outline 2 numerical method for solving the inverse problem for the case of the one-dimen- .
sional quasilinear heat-conduction equation with a continuous heat source and a convective term. This
model corresponds, in particular, to the three-dimensional thermal destruction of the material of an ob-
ject, with the flow of the resulting gaseous products in the pores of the object.

This method is based on an implicit difference scheme; the integration is carried out along the di-
rection of the spatial variable [1]. This approach to the solution of this problem is taken under the assump-
tion that implicit difference schemes should have significant "viscous" properties for this choice of the
direction of integration of the heat-conduction equation. This hypothesis is verified in the numerical use
of the method, so that it becomes possible to obtain a regular solution of the inverse problem with short
time steps, even if the input temperatures are afflicted with certain (small) errors.

The analytic form of this problem is as follows:
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where C(T), A(T), k(T), (T), X;(t), X;&), qs¢), and £(T) are known functions, We are to determine the
heat flux at the left~hand boundary of the region and the temperature field within the object under initial
condition (2) and under the boundary condition at the right-hand boundary, condition (3). We also know
the temperature at a point within the object. The problem is complicated by the external moving boun-
daries and the moving boundary with the known temperature. From the physical standpoint, the motion
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of these boundaries, which is described by the functions X &), X,(t) ; and X4(t), can correspond to linear
removal, thermal shrinkage, or expansion of the material,

The first step in the solution of problem (1)-{) is to reduce it to a Cauchy problem., For this pur-
pose we need to find the temperature field in the region Dy{X,¢) = x = X&), 0 =t = ty,} and thus to deter-
mine the heat flux q,¢) at the boundary X,&). This is a well-studied boundary-value problem, and numeri-
cal solution methods are available [2, 3].

In the region D;{X; ¢) = x = X,tt), 0 =t =t} we are thus confronted with the problem of determin-
ing the temperature field and the boundary conditions T (X, {t), t], q;&) from the known functions T [X,{), t]
and q,(t):
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From the computational standpoint it is more convenient to use a rectangular range for the independent
variables. To carry out the appropriate transformation of the original region, we use the new variables
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which "straighten out” the fronts. Then (5)-(8) can be rewritten as
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We introduce the difference grid
Ry At =hi, i=0,1, ..., n =47, j=0, 1, ..., m),

where h is the spatial step and Ar is the time step. Approximating the derivatives by
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we find the following difference analog of Eq. (10) for each i-th spatial layer:
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To close the system of equations we also need to specify {we boundary conditions, at r =0and 1 =714,

where 7, is the right-hand limit of the time interval. From the initial temperature distribution we have
Tf =¢;. As the second condition we can use one of the a priori relations
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or we can approximate ‘Eq. (10) with j = m by the difference scheme
-1 ™
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where M;n is an operator approximating the right side of Eq. (10), Conditions (16) and (17) cause smaller
distortions in the vicinity of the right-hand limit of the time interval.

In relation (16) the quantity T;n *1 can be taken from difference equation (10) with j = m.

Accordingly, in each i-th spatial layer we must solve a system of nonlinear algebraic equations [in
the case 1 = Ty we can use, e,g., relation (15)]:

7‘2:“«@[1‘ . )
ATH L BT+ DiTH =FlL j=1,2 ..., m—1, 1s)
TP =TF 4+ bAr.

System (18) is solved by the pivotal condensation method with iterations in terms of the coefficients. The
jterative process is ended when the condition

max !T{(P-H) . T{("’g <e
i

becomes satisfied; here p is the number of the iterative step and ¢ > 0 is a prespecified quantity.

Solving problem (18) in each spatial layer, we find the temperature field in region D;. Then the heat
flux can be determined by a simple calculation on the basis of a finite-difference apprommatwn of the
boundary condition at the left-hand boundary:
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To begin the calculation process, we need to specify the temperature profiles at the first two spatial
layers. The first profile is determined from condition (13), while the second is calculated through a
finite-difference approximation of boundary condition (7).

This algorithm is an instance of one of the direct methods for solving the nonlinear inverse heat-
conduction problem with Cauchy data, Because of the "incorrect" nature of the initial formulation of the
problem, the calculation becomes unstable under certain conditions, and a regular solution can be found
by appropriately choosing the time of the integration, Ar [1].

Errors in the input data, which are always present, since measurmg instruments are imperfect,
strongly influence the degree of instability. When direct methods are used for solving the inverse prob-
lems it is possible to reduce that minimum value of the integration time step for which the solution is
still smooth, by smoothing the input temperatures, The treatment of the input data should tead to a uni-
form approximation of not only the function itself b}it also its first derivatives.

In general, a problem of this type is an "incorrectly" formulated problem, and it can be thought of
as the problem of using a regularization method to solve the operator equation
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where f5 are the input data, specified with some errors, and A is the unit operator,

We assume that the function fg is given on the uniform grid 7; = ar+j, j=0, 1, 2, ...

We write the regularizing functional of A, N, Tikhonov inthe form
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where uj*, j=0, 1, ..., m+1 serves as the "trial"” solution [6], and k; and k, are certain nonnegative

numbers.

{20)

@

Minimizing (21) with respect to all uj, j = 1, 2, ..., m, we find a system of linear algebraic equa~

tions with a symmetric five-diagonal matrix for determining the regularized solution:

=2
Za;,ku}.zbj, i=L2 ....m
ke==f-—2
where . b
o &
T4+2222 28522 k=1 m—1,
At? T A "
ak
ek = l+ Ao +6 ?: k=2,3,..‘,m-—2,
ak ok,
| Tt S t o k=m;
N Ar? A m
. T S S U
Ad? Ax*
Qg el = Qpl, b = { ;(_ZEI_._Q akz , k:m,
AT? At
0, k=1;
0, k=12
A, -2 == dp.g, £ == akz,kza& 4, ... m
At
qk L] L . ak * L] » *
by =f— At; (U2 —2u; + to + 1) + 1: (g — 4up + 5uy — 2u + 2u,);
o
bzr_.-fzw-—- Af; (ﬂ3 “*4u3+6u2“~‘4u1'r'u0'—"u0)
=f— oy (u;+;~—-2af—;—u; ) 4 e (Uap2 — Mgy - Bug — Atsy + o),
& A > i -~ A-r‘ 42 = St & k1 T MR—2fs
k:—;3,4,...,m—-—2‘,
by = f *ky 4
et = et — A T4 (Ums — 8ty — 61ty y — bty -t 3 —C AT

f___“kx - . ok,

A? At
and Cyy = du{%y,)/d7is specified beforehand,

(um—l - um) T (u;1~2 — 4“;_) e Su:,, — 2u:,,+1 — ZCmA'r“’);

(22)

We note that the value u = f; is the initial condition for the heat-conduction problem at the point at
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T which the temperature is measured, Inthe course of the experiment
’ % this value can be measured quite accurately.

The best approximation is chosen on the basis of the "discrep-
ancy principle" [6]: where
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where o is the mean square error of the input data at time j.

Condition (23) allows us to construct a method for automatically
seeking the optimum approximation [5]. An algorithm of this type
was discussed in [7]. If it is not possible to evaluate the measure-
ment error § during the experiments, use may be made of the quasi-
optimum-parameter method of {8], which is based on the internal
convergence of the regularized solutions.
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j In accordance with the algorithms given above, we compiled
ALGOIL-60 programs and carried out calculations for model problems
on an M-220 computer. The results of one of these calculations are
shown in Fig, 1. We assumed a hypothetical material whose thermal
properties depend on the temperature in the following manner:

Fig. 1. Results of a solution
of the model inverse problem
through the use of exact, per-

turbed, and smoothed input N 1 30

data. Solid lines) exact numer- C(T) =2— 0.02T% + 0,77 + 1 v M) =3— 1372 T+ 15"

ical solution: .1) Tw (r) for the E(T) = % (T) = 0.

case of exact input tempera-

tures; 2) sawtooth perturba- The initial temperature distribution is assumed constant and equal to
tion of the input data, Af = zero. As the input data we used the temperature of the internal sur-
+0,05fmax, j =1, 2, ..., m; face of a plate [at x = Xy(r)]. Our problem was to determine the tem-
3) T (r) for the case of per- perature at x = Xy (r). The boundaries of the plate moved according
turbed data; 4) input function to the specified laws

reconstructed by regulariza~
tion method; 5) Ty (r)_for the
case of smoothed data. The exact values of the input temperatures, f(r), and the unknown
function Ty, (r) were determined through a numerical solution of the
heating problem for boundary-value problems of the second kind:
156
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In these calculations we used an n X m = 50 X 50 difference grid, Calculation of one version without itera-
tions in terms of the coefficients in the solution of the inverse problem required about 15 min, In this
example the average value of the dimensionless integration time step was
A Foav — (_7\'. ) _...,é‘.‘:._.T‘
\ c /av (X‘.’._Xl)

av

~ 0.03.

To save computer time, we carried out the calculations without iterations with respect to the coefficients.

The function Ty (r) which we found through the use of the exact data is stable. When perturbations
are incorporated in the input temperatures, however, the calculation becomes unstable. Smoothing of the
input data by the regularization method leads to a stable and quite accurate result, even if the errors are
large (5% of fray)-

1t should be noted that in the reconstruction of the function by the regularization method the results
found through minimization of the first derivative alone (k; = 0) are not satisfactory. A satisfactorily
smooth function is obtained if the functional in (21) is minimized with both the first and second derivatives
with respect to the time (k; = k, = 1) taken into account,

To summarize, we can say that the smoothing of the input data permits an important extension of the
range of applicability of direct methods for solving inverse heat-conduction problems,
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We note, in conclusion, that the results found through the use of this algorithm to solve linear in-
verse problems show that the numerical solution on the basis of the implicit approximation scheme has
"viseous" properties which are much better than those corresponding to direct algebraic methods for
solving the integral equations, Inthe numerical approach, the minimum dimensionless time step, AFogy,
is about 0,01.

NOTATION

C(T), specific heat per unit volume; A(T), thermal conductivity; k(T), filtration coefficient; (T},
distributed heat source (or sink); T, temperature; x, £, coordinate; h, coordinate integration step; t, 7,
time; Ar, time integration step; Dy, D, range of integration of the heat-conduction equation; ¢(x), initial
temperature distribution; g, heat flux; X, coordinate of boundary of object; f, input data; &, error in
input temperatures; A, operator; u, function; fs, input data specified with certain errors; Ty (r), tem~
perature of the internal surface; Fo, Fourier number; AFo, increment in Fourier number; T,,, boundary
value at the right-hand limit of the time interval; f#-ll, norm; e, regularization parameter.
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